
A Framework on Database Content Security using
Negative Databases

Vemula Vamshi Krishna Rama Krishna V
Dept. of CSE Dept. of CSE

SCCE SCITS
Karimnagar, AP, India Karimnagar, AP, India

Abstract-In today’s Information warfare providing Data
Security to Web based databases is a critical issue. Existing
techniques to protect Database content are not sufficient to
extend for web based databases. Hence there is a huge
requirement for developing algorithms, which deals with data
protection against intruders. Developing Negative Databases
will solve such problem. A Negative Database is a Database
which holds original data as well as forged data (i.e.
counterfeit data). Intruders may be able to get access to such
databases, then they will access data blocks which holds
forged data along with original data. In this paper we try to
present a framework to protect and improve the retrieval of
data in the databases by negative data representations.

Keywords: Negative Databases, Data Security, Web databases

I. INTRODUCTION
In Web based Database Systems security is a big threat.
People always try to access the information available in
web through different techniques. In these situations the
organizations such as Government and Security Agencies
should provide utmost security to their web databases.
There are number of techniques to secure the data, but the
question is “How many are perfect enough in protecting the
databases?”. It is very difficult to provide 100% security to
database from malicious accesses. Hence we are presenting
a Framework using Negative Database representations. By
Negative Database the original data in database will be
represented in a complemented form. Here Negative
Database is defined as a database which holds counterfeit
data along with original data. When malicious user tries to
access the information he will get data containing original
data and counterfeit data which are in very difficult to
analyze form. That means the malicious user unable to
extract original data from that negative data. With this we
can achieve utmost security by avoiding malicious accesses
to the data in databases. As per our knowledge gained with
literature survey it is observed that there are very few
algorithms which are reversible. Hence in this paper we
come up with a reversible algorithm to convert original
data to its negative form. Some of the theoretical
algorithms on reversible negative databases are proposed in
[3] but they are not implemented to use with real time
applications.
The main intension of our algorithms in this paper is to
efficiently retrieve original data from negative data by
avoiding malicious access of unauthenticated users and
allowing access of authenticated users.

II. ARCHITECTURE
In this paper we present a security framework which can be
embedded at the middle layer of any web-based or stand-
alone application that requires high security levels. There is

no restriction on the database management system that
needs to be used. The top level architectural diagram of the
implementation of the security framework concept is
shown in Figure 1. A user submits a query to the database
using the web browser component. The server starts
processing the query and the security framework comes
into action. The middle tier includes the framework that
consists of several technologies combined together to give
a robust safeguard to the database layer that lies below the
framework. More specifically, the framework consists of
four main modules, namely, Database caching, Virtual
database encryption and Database encryption algorithm,
along with Negative Database conversion algorithm.
The manipulated data is finally stored into the actual
database after passing through all the components of the
security framework. Thus the database contains the
negative data, which is a manipulated form of the original
one, as well as the positive data. All the queries that are
used by a valid user work with the Java Hibernate
technology [1]; hence the database is updated as objects
and its attributes. Each table is represented as an object and
the tuples are the values of the attributes of the object. Any
query that is invoked towards the database will be
associated with objects and its attributes; hence an invalid
query will not be able to retrieve any useful information
from the database. In what follows, we discuss in detail the
framework’s modules.

Figure 1. System Architecture

Vemula Vamshi Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2225- 2228

2225

A. Database Caching
Database caching refers to the concept of easy access of
frequently used data. It is the way in which frequently used
data is stored in an easy or quick access area such as the
RAM and defining specific ways of retrieving those data.
The purpose of data caching has several advantages
compared to the use of a simple database namely, (a) faster
data access by using index to the disk and reduces disk
access, and (b) higher CPU utilization as the computation
time to access the data is reduced. This concept provides
higher performance when there is huge amount of data
access and a lot of modification to the database.

B. Virtual Database Encryption
Virtual database encryption refers to the use of a set of
randomly generated keys attached to the objects in any
hibernate scenario. It is one by generating a set of random
keys using the system time and attaching it to the data in
the form of objects and its attributes. This is detailed in
Figure 2. The new values are then sent to the database as an
attribute of object, the objects refer to the tables in the
database and the value of the attributes relates to the tuples
in the table.
The algorithm is invoked when a SELECT, INSERT,
UPDATE or DELETE action is performed in the database,
maintaining the ACID property and providing high amount
of security to the data in the database along with a faster
access.

C. Database Encryption Algorithm, RSA_PublicKey()
The database is always populated by data that is entered by
the administrator and updated by a benign user, which
could be a online banking or credit card company customer.

A problematic situation may arise when a malicious user
tries to update or modify the database. The example of such
updates could be a SELECT query inside an INSERT
query. The purpose of the encryption module along with
other three modules is to provide utmost security to the
data. In our framework we use the public key encryption
algorithm RSA. Strong encryption makes the database
more secure and reliable. The encryption algorithm is
preceded by two modules which are Database caching and
Virtual Database Encryption algorithm. It takes the input
from the previous module and applies RSA on the data.
The encrypted data is passed through the Negative
Database conversion algorithm as shown in Figure 3 to
generate encrypted multi sets of data for a single true set of
data, making the database hard to query. The data
encrypted in this layer is passed to the next layer called the
Negative Database Conversion layer.

D. Negative Database Conversion Algorithm
The main concept of the framework lies on the
implementation of this module. The purpose of using
negative database along with the positive database is to
provide extra security to the database. Any data
manipulation query from the administrator or the customer
is referred to as a benign user query; on the other hand any
query from anyone else is always referred to as a malicious
query. All the queries will go through all the modules to
generate a secure database value.
The last module, also called the Negative Database
conversion algorithm, is used to create a large set of values
rather than just a single tuple. The generated sets of data are
inserted in the database. Contrary to common database
applications, in our negative database a malicious query
will not be able to fetch the data from the database.

Vemula Vamshi Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2225- 2228

2226

The term negative is used because of the generation of false
sets of data in reference to the actual data. The actual data
passes through the Virtual Database Encryption algorithm
and the Database Encryption algorithm, RSA_publicKey()
layer to generate the data that passes through the negative
database algorithm module. The number and the type of
false data generation will depend on the algorithm used.

After the input is manipulated using the algorithm in
Figure 4, it will be saved to the database. For example, let
the SSN be the attribute that we want to encrypt in the
negative database. If the SSN value of customer “Niveeta”
after the Database Encryption algorithm, RSA_publicKey()
layer is “4@AGD”, Table 1 shows how the respective
database table tuples will look like.

The process of data retrieval from the database can be done
in two ways, for a benign user and a malicious user. A
benign user submits a legitimate query into the database
and is able to get the correct output (e.g. <SSN, Name>).
On the other hand, a malicious user writes some queries
that could be vulnerable and are able to retrieve some
output, but the output will comprise of numerous non-
interpretable data sets, as the ones shown in Table 1.

III. PERFORMANCE
Database caching: In our framework we are using system-
derived timestamps as keys. Thus the complexity of the
database caching algorithm O(n), when the whole database
needs to be searched for a particular tuple.
Virtual database encryption: This layer depends on the
timestamp generation and the conversion of the data into
ASCII values. Thus the computation time is O(n) where n
is the length of the used password.
Negative Database conversion: The main task of this
algorithm is to generate a set of data that is to be populated
to the negative database. The input from the previous
module to this module is an encoded value which is an 8
digit value, hence 8 row data has to be calculated and then
populated to the database. This 8 digit value remains the
same length because of some constraints made in the
previous module. Hence this module is not affected by the
size of input, hence has O(1) complexity.
Hence the overall complexity of the security framework is
O(n), when we combine the complexities of all the
modules. This is however very high compared to a simple
web-based application. This can be compensated by the
level of security this framework provides in comparison to
the low- security, high risk of data for other applications.

IV. CONCLUSION
This solution of designing a security framework aims at
providing high security to a web-based environment, where
attacks to the database are frequent which results in theft of
data and data corruption. This paper provides evidence on
the retrieval of data from a negative database. In all the
previous Negative Database algorithms [3], the storage of
actual data as negative data was explained, however was
not implemented. To the best of our knowledge, the
retrieval of negative data has not yet been addressed in the
literature, and this paper has made a progress on that end.
In this work, we propose a framework that allows the
negative representation of the original set of data, resulting
in returning invalid results for malicious queries (e.g.
through login). At the same time, it enables the retrieval of
the original data in case of legitimate queries.
There are still many open issues related to the notion of
negative databases for real world applications. This paper
provides evidence on the storage and retrieval of data, for a
benign user and access denial for a malicious user. This
would only deal with the INSERT and SELECT query of
the database. The most challenging future research based
on this project could be to UPDATE the negative database.
The negative database has the manipulated value as well as
the timestamp of each INSERT operation. The main
challenge in this scenario is to update the database value
checking the timestamp; this can be done by finding the
values, which is the same process as search. However the
updated value should have a negative set of itself along
with the system time. Building real world applications can
be one of the challenging works based on the algorithms
explained in this paper.

V. FUTURE WORK
We can investigate the different methods for reducing the
size of the Negative Database, and to efficiently retrieve the
data from the Negative Database.

Vemula Vamshi Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2225- 2228

2227

REFERENCES
[1] Esponda, F. (2005). Negative Representations of Information, Ph.D.

Dissertation, The University of New Mexico
[2] Esponda, F., Ackley, E.S., Helman, P., Jia, H. & Forrest, S. (2007).

Protecting data privacy through hardto-reverse negative databases.
International Journal of Information Security, 6

[3] Negative Databases. (2006). Retrieved May 29, 2008, from
http://esa.ackleyshack.com/ndb/

 [4] F. Esponda, E.D. Trias, E.S. Ackley, and S. Forrest. A Relational
Algebra for Negative Databases. UNM Computer Science Technical
Report TR-CS-2007-18, November 2007.

[5] F. Esponda, E.S. Ackley, P. Helman, H. Jia, and S. Forrest. Protecting
Data Privacy through Hard-to-Reverse Negative Databases.
International Journal of Information Security (IJIS), Volume 6,
Number 6, pp.403-415, October, 2007.

[6] F. Esponda, E.S. Ackley, S. Forrest and P. Helman. On-line Negative
Databases. International Journal of Unconventional Computing,
Volume 1, Number 3, pp.201-220, 2005.

[7] Fernando Esponda, Stephanie Forrest, and Paul Helman. Enhancing
Privacy through Negative Representations of Data. (pdf) UNM
Computer Science Technical Report TR-CS-2004-18, March 2004.

Vemula Vamshi Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2225- 2228

2228

